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Abstract

While Bayesian analysis has become common in phylogenetics, the effects of topological prior probabilities on tree inference have
not been investigated. In Bayesian analyses, the prior probability of topologies is almost always considered equal for all possible
trees, and clade support is calculated from the majority rule consensus of the approximated posterior distribution of topologies.
These uniform priors on tree topologies imply non-uniform prior probabilities of clades, which are dependent on the number of
taxa in a clade as well as the number of taxa in the analysis. As such, uniform topological priors do not model ignorance with respect
to clades. Here, we demonstrate that Bayesian clade support, bootstrap support, and jackknife support from 17 empirical studies are
significantly and positively correlated with non-uniform clade priors resulting from uniform topological priors. Further, we demon-
strate that this effect disappears for bootstrap and jackknife when data sets are free from character conflict, but remains pronounced
for Bayesian clade supports, regardless of tree shape. Finally, we propose the use of a Bayes factor to account for the fact that uni-
form topological priors do not model ignorance with respect to clade probability.
� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Over the past few years, a method of complex prob-
lem-solving known as Markov Chain Monte Carlo
(MCMC) has been gaining popularity among phyloge-
neticists (see reviews in Holder and Lewis, 2003; Huel-
senbeck et al., 2002; Lewis, 2001). MCMC itself is not
new, dating from Metropolis et al. (1953), and its Bayes-
ian character—its ability to sample a posterior distribu-
tion—is well established (Tierney, 1994). But the
implementation of the MCMC algorithm as an applica-
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convention.
tion in phylogenetics is fairly new, originating with the
doctoral dissertation work of Li (1996) and Mau
(1996). Others have discussed Bayesian interpretations
of phylogenetic problems (Farris, 1973; Harper, 1979;
Wheeler, 1991), but these did not involve MCMC, and
so we do not treat those interpretations here.

Considering only explicitly statistical methods of
phylogenetics, a Bayesian approach is, in some ways,
more appealing than the likelihood approach. As is
well known, the likelihood of a hypothesis (here, the
tree) given the data is proportional to the probability
of the data given the hypothesis (see Edwards, 1992,
p. 9). Phylogeneticists—whose primary investigation
usually relates to tree selection—are more concerned
with the probability of the tree, conditional on the
model and the data (rather than the probability of
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the data), and this is what Bayes� formula provides.
But to accomplish this inversion (see Farris, 1973),
information regarding the prior probabilities of the
trees is needed. Many advocates of Bayesian phyloge-
netics have commented on the importance of this prior
assessment of tree probabilities (Huelsenbeck et al.,
2001, 2002; Lewis, 2001) and have mentioned that
prior selection can be problematic (Holder and Lewis,
2003; Lewis, 2001).

Because of these issues, some questions remain
open. What constitutes a reasonable topological
prior probability, and how does one arrive at such
a distribution? The estimation of prior probabilities
is difficult when little is known about the phylogeny
of a group of organisms beforehand, which is most
often, or arguably always, the case for systematic
studies.

Proponents of the new Bayesian approach to phylog-
eny have advocated the use of uniform topological
priors to reflect ignorance (see review in Huelsenbeck
et al., 2002; Lewis, 2001). When nothing is known
regarding the relationships of taxa prior to analysis, all
tree hypotheses are considered to be equally probable.
This may be valid given the ‘‘principle of insufficient rea-
son’’ (LaPlace 1820, as cited in Kass and Wasserman,
1996). For example, Farris (1973, p. 251) argued that,
in a Bayesian framework, ‘‘. . . P{E}, the probability of
evolutionary hypothesis [tree] E not conditional upon
any data, may be treated as if equal for all E.’’ While
it may seem paradoxical on the one hand to claim the
superiority of a method due to its ability to incorporate
prior knowledge, and, on the other, to claim that igno-
rance should be modeled, this concern is not unique to
Bayesian phylogenetics, and forms the kernel of the
schism between the ‘‘empirical’’ and ‘‘subjective’’
schools of Bayesian statistics. This debate is beyond
the scope of the present study.

Other than modeling ignorance, justifications for the
use of uniform topological priors are that the likelihood
function will overwhelm any information in the topolog-
ical priors anyway (see review in Lewis, 2001), and that
the topological prior information is unimportant to the
Metropolis-Hastings algorithm (Hastings, 1970;
Metropolis et al., 1953) because it is identical in both
the numerator and denominator, when all topologies
are considered equally probable a priori. The conditions
under which the former will be true in phylogenetic anal-
yses have not been established. The latter, however, is
necessarily true when tree topology is the hypothesis
being evaluated. Because of this property of the Metrop-
olis-Hastings algorithm, and because every tree is given
an equal probability a priori, uniform priors are said to
model ignorance effectively. However, it has long been
established that no prior can be devised that models
ignorance for all hypotheses simultaneously (Franklin,
2001; Kass and Wasserman, 1996; Walley, 1996). This
applies to phylogenetics, when the hypothesis being
evaluated is not the entire topology, but the presence
of individual clades.

We will show that when uniform topological priors
are stipulated, clade probabilities are not equal a priori.
Specifically, the number of taxa in a clade, given the
number of taxa in the entire analysis, affects the prior
probability of that clade in a predictable way. Because
of this, if the hypothesis being investigated is monophyly
(i.e., the probability of the clade), uniform topological
priors do not model ignorance, an undesirable property
of a prior distribution when little is known a priori.
While we do not argue that clade priors must be uni-
form, the clade priors that result from uniform topolog-
ical priors are difficult to justify as reasonable in any
case. Under these conditions, the claim that uniform
topological priors do not influence results in a Bayesian
framework is false.
2. Uniform topological priors and clade priors

Considering a pool of fully bifurcating, equiprobable,
rooted trees for n taxa, the probability of a given clade
of T taxa is equivalent to the probability of randomly
choosing a tree containing that clade, or, considered an-
other way, the sum of the (equal) probabilities of all
trees containing that clade. Here, the probability of a
clade is obtained by multiplying the number of rear-
rangements of that clade by the number of rearrange-
ments of all taxa not in that clade, divided by the
number of possible rooted trees for n taxa (see Eq. 1).
This means that if all trees are considered equally prob-
able, the probability of a clade is dependent on the num-
ber of taxa it contains, T, and the number of total taxa
in the analysis, n.

Because a monophyletic group of T taxa is rooted,
the number of rearrangements is the same as the number
of rooted trees for T taxa (Felsenstein, 1978; see review
in Swofford et al., 1996). This value is multiplied by the
number of possible n � T rearrangements (that do not
compromise the monophyly of T). The denominator is
simply the number of possible labeled trees for n taxa
(as in Felsenstein, 1978). Therefore,
QT

i¼22i� 3
� � Qn

i¼Tþ12i� 2T � 1
� �

Qn
i¼22i� 3

: ð1Þ

Eq. (1) calculates the probability of monophyly for T

taxa, given that all possible rooted topologies are
equally probable (see Formula 12 of Brown (1994) for
a similar, independently derived formula. However,
Brown�s formula results in somewhat different values
than those obtained here [see reported values therein]).

To demonstrate this more intuitively, consider a set
of n = 5 taxa, A–E, for which there are 105 bifurcating,
rooted trees. Considering the monophyly of T = 3 taxa,



Table 1
Empirical analyses of natural data calculating both Bayesian support
values and bootstrap or jackknife values

Study Number of clade support values
provided

Bayesian
support

Bootstrap Jackknife

Berendzen and Dimmick (2002) 44 43a

Cox and Hedderson (2003) 22 30b
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A, B, and C, there are 9 of 105 trees that contain this
clade; this comprises 8.6% of all possible trees. However,
if considering a clade of T = 2 taxa, A and B, there are
nearly twice as many trees containing this clade, 15 of
105 trees, or 14.3%. The probability of selecting a tree
containing a clade of A and B exclusively is a priori
1.7 times that of selecting a tree containing a clade of
exclusively A, B, and C.

As Fig. 1 shows, very large clades and very small
clades will always be more probable a priori than mid-
dle-sized clades (if n is constant); as taxa are added, this
disparity becomes more dramatic. To demonstrate this
for an analysis of typical size, a clade of two taxa in a
tree of 50 taxa has a prior probability of approximately
1%, while a clade containing 25 taxa has a prior proba-
bility of 2.53 · 10�15, or about one out of 400 trillion.

In this study, we examine the relationship between
clade priors under the assumption of uniform topologi-
cal priors and reported Bayesian clade support in pub-
lished articles. We hypothesized that, due to the
extremely non-uniform nature of clade priors, the re-
ported Bayesian clade support will be influenced in a
non-uniform way. Specifically, we predicted that the
clade priors would be correlated with the Bayesian clade
support values. In contrast, we predicted that bootstrap
Fig. 1. (A) Clade prior probabilities calculated using Eq. (1), which
assumes that all trees are equally probable. The prior probability of a
clade (Pr) is dependent on both the number of taxa in the clade and the
number of taxa in the tree (numbers above each plotted curve). For
each curve, the prior probability of small and large clades is greater
than that of intermediate clades. (B) Log transformation of the same.
and jackknife support values deriving from both parsi-
mony and maximum likelihood analyses will not corre-
late with clade priors, because uniform topological
priors cannot be specified in the tree search algorithms.
3. Empirical data and clade priors

3.1. Analysis

We gathered clade support values from seventeen
studies in which Bayesian clade support was reported
with at least one other support measure, either boot-
strap or jackknife (Table 1). We included only those val-
ues for which Bayesian support was generated from
Danforth et al. (2003) 47 31
Delsuc et al. (2002) 46 46
Inoue et al. (2002) 25 25
Jordan et al. (2003) 74 74
Kiefer et al. (2002) 15 30c

Kornhall et al. (2001) 56 48
Leache and Reeder (2002) 75 154d

Mateos et al. (2002) 18 55e

Nicholson (2002) 37 18
Reed et al. (2002) 47 91f

Rokas et al. (2003) 51 43
Rydin and Källersjö (2002)g 70 54
Simmons et al. (2004) 95 97
Voris et al. (2002) 10 7
Wilcox et al. (2002) 20 20

Total 752 642 224

Values for clades not appearing in all methods were included, as such
resolution (or lack thereof) may be dependent on prior influence. These
values were used to measure correlation of clade prior probabilities
(assuming equiprobability of tree topologies, as calculated in Eq. (1))
and clade support, using the two-dimensional Kolmogorov–Smirnov
test.

a 23 unweighted parsimony bootstrap + 20 weighted parsimony
bootstrap.

b 14 parsimony bootstrap + 16 likelihood bootstrap.
c 15 likelihood bootstrap + 15 parsimony bootstrap.
d 51 unweighted parsimony bootstrap + 55 weighted parsimony

bootstrap + 48 likelihood bootstrap.
e 30 parsimony bootstrap + 25 likelihood bootstrap.
f 29 unweighted parsimony bootstrap + 31 weighted parsimony

bootstrap + 31 likelihood bootstrap.
g Multiple data sets were analyzed representing different taxon

sampling. Only data derived from analysis of the same data sets were
utilized; Bayesian support and jackknife supports derived from matrix
38:4 in Figs. 1A and C; Bayesian support and jackknife supports
derived from matrix 38:2 in Figs. 1B and D.
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identical data. A total of 752 Bayesian clade support val-
ues, 642 bootstrap support values and 224 jackknife sup-
port values were compared with clade priors calculated
using Eq. (1). Linear regression is inappropriate for
comparing the correlation of clade priors with support
values, because, in our data, residual variance decreases
as prior probability increases (Fig. 2). This violation of
homoscedasticity makes regression, and other non-para-
metric tests that are sensitive to non-linear transforms,
inappropriate. However, the two-dimensional Kol-
mogorov–Smirnov test makes no distribution-based
assumptions and detects correlation between two distri-
butions even when the controlling variable�s influence on
the response variable differs over the range of values
Fig. 2. Distribution of measures of nodal support (Bayesian clade
support, bootstrap, and jackknife) plotted against prior clade prob-
ability, as calculated in Eq. (1). Values range from 2.75 · 10�6–0.037.
Intensity of symbols relates to the number of superimposed data
points. Support data were gathered from empirical studies of natural
data (summarized in Table 1). All studies utilized provided both
Bayesian and at least one other type of support calculated from the
same matrix of sequence data. These distributions show that variance
in support decreased with increasing clade prior probability for all
three measures of support.
(Garvey et al., 1998). To implement the two-dimensional
Kolmogorov–Smirnov test, we used EZ2DK-S, which
compares observed data to the distribution that results
from 5000 random permutations of the observed data
(distributed by J. Garvey at http://www.science.siu.edu/
zoology/garvey/2dks.html).

3.2. Results

All measures of support were significantly correlated
with clade prior probabilities calculated under the
assumption of uniform topological priors (Bayesian sup-
port: P = 0.0048; bootstrap: P = 0.0058; jackknife:
P = 0.0020). This indicates that, for all support measures
on trees of a given size, the largest clades and the smallest
clades are supported most strongly, whereas medium
sized clades receive lower support (see Fig. 1). We ex-
pected that this might be the case for Bayesian clade sup-
port values, because the method involved the
specification of non-uniform clade priors (i.e., uniform
topological priors). We did not expect such a relationship
between the bootstrap or the jackknife and clade priors,
because no tree priors, uniform or otherwise, are stipu-
lated in either of the optimality criteria (parsimony and
maximum likelihood) or the support calculations (boot-
strap and jackknife). Indeed, we included these compar-
isons essentially as controls. However, the finding that
both the bootstrap and jackknife, in addition to Bayesian
clade support values, are significantly correlated with
clade priors begs the question: Why?
4. Homoplasy-free data and clade priors

4.1. Analysis

Although others have addressed why different tree
shapes (and hence different clades) may have differential
support (Huelsenbeck and Kirkpatrick, 1996), and why
clades will be differentially supported merely by virtue of
size (Sanderson and Wojciechowski, 2000), a general
explanation of these observations remains elusive. San-
derson and Wojciechowski (2000) noted a monotonic
decrease in bootstrap support of the Neoastragalus

(Fabaceae) clade as taxon sampling increased, under
both parsimony and neighbor-joining algorithms. How-
ever, in their study, increasing clade size was accompa-
nied with an increasing number of terminals in the
whole tree. As we have shown in Fig. 1, clade priors
are dependent not only on the number of taxa in the
clade of interest, but also on the number of taxa in the
tree. Upon examining their data, we found that clade
prior probabilities for Neoastragalus (as calculated from
the various topologies presented by Sanderson and Woj-
ciechowski, 2000) also decreased monotonically with
increasing clade size, simply because the number of taxa

http://www.science.siu.edu/zoology/garvey/2dks.html
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in each analysis was increased. Each matrix was com-
posed of approximately half Neoastragalus species (5/
13, 8/19, 11/25, 15/33, 25/53, 35/73, and 79/140); clade
priors for these nearly-equal ratios of T and n decrease
logarithmically (Fig. 1B).

Huelsenbeck and Kirkpatrick (1996) speculated that
bias in tree shape may be related to randomness of data.
While that discussion related specifically to random
branching tree models, they proposed that the bias
may result from noise at the tips of a tree, a consequence
of rate heterogeneity. An explanation of our own results
and the phenomenon observed by Sanderson and Woj-
ciechowski, which follows, is similar to this. However,
our explanation does not depend on the distribution of
noise on a tree, but is related to the noisy, imperfect nat-
ure of real data. Multiple hits at nucleotide sites (such
that synapomorphies are overwritten) result in phyloge-
netic noise (sensu Wenzel and Siddall, 1999). As noise in
data increases, the probability of selecting a noisy char-
acter by re-sampling (whether bootstrap or jackknife)
will increase. Random characters will necessarily sup-
port random topologies. So, when re-sampled, the de-
gree to which a matrix is composed of noisy characters
will relate directly to the degree of support for random
trees appearing across re-sampling replicates. As noise
increases, group membership frequencies will approach
the probabilities of clades described by Eq. (1). How-
ever, data in which every clade in a tree is supported
by a single uncontradicted synapomorphy do not have
any character noise, and so would not be expected to
produce this relationship. Therefore, we predict that
bootstrap and jackknife values will not correlate with
clade priors when they are inferred from homoplasy-free
data. If, however, the correlation with Bayesian clade
support values persists, influence due to clade priors is
the only explanation.

To perform this test, we constructed binary data
matrices, all of which give rise to cladograms in which
each clade is supported by a single uncontradicted syn-
apomorphy. Simulated data cannot accomplish this test,
because the entire cladogram must be free of homoplasy.
To eliminate the possibility that the results are biased
based on tree shape, five of the contrived matrices
yielded pectinate trees, and five of the matrices yielded
balanced trees. For both types, the matrices contained
20, 19, 18, 17, 16, and 15 taxa. For balanced trees, start-
ing with the 20-taxon-case, one taxon was alternately
pruned from each of the two largest clades, such that
every other taxon removal restored symmetry to the
cladogram. The support values from these differently
sized cladograms were combined to increase the amount
of nodal-support data generated (to afford power) and
to gather a more complete range of clade priors. For
example, a clade of 2 taxa on a tree of 20 taxa has a dif-
ferent clade prior (0.027027027) than a clade of two on a
tree of 19 taxa (0.028571429), and so on (see above). By
staggering the taxon number, a more complete distribu-
tion of clade priors was obtained.

Each contrived matrix was subjected to Bayesian,
parsimony bootstrap and parsimony jackknife analyses.
For the Bayesian analyses, MrBayes 3.0B4 was used to
implement the ‘‘no common mechanism’’ (NCM; ‘‘lset
parsmodel = yes’’) model of Tuffley and Steel (1997).
This was done for two reasons: (1) this model is much
more computationally efficient than typical maximum
average likelihood models that stipulate homogeneity
of the underlying process, and (2) by using NCM, the
optimality criterion that generated the trees themselves
(i.e., parsimony) was identical for all three support mea-
sures. Of these two, the most important, of course, was
ensuring that differences in optimality criteria are elimi-
nated, and the differences among the three support mea-
sures are due solely to the methods by which the support
values are calculated.

For Bayesian analyses, all the default settings were
retained (see MrBayes3.0B4 for details; Huelsenbeck
and Ronquist, 2001). In each case, stationarity was
obtained by the 5000th generation, so the first 5000
trees were discarded as burn-in. Both bootstrap and
jackknife analyses were implemented in PAUP* 4.0
beta10 (Swofford, 2002), issuing 10,000 replicates
per matrix, with one random addition sequence per
replicate, and TBR swapping on two trees held (these
settings derive from Freudenstein et al., 2004). Addi-
tional settings for jackknife analyses included specify-
ing 37% deletion probability and selecting the
‘‘emulate jac’’ option (As discussed in Freudenstein
et al. (2004), these options in combination result in
the deletion probability of e�1 set fourth in Farris
et al. (1996)).

4.2. Results

Bayesian support values resulting from the contrived,
homoplasy-free data matrices showed a significant, posi-
tive correlation with their clade priors, whether the
clades being examined were from balanced trees
(trees = 5, nodes = 87, P = 0.0002), pectinate trees
(trees = 5, nodes = 87, P = 0.0002) or both groups com-
bined (trees = 10, nodes = 174, P = 0.0002). However,
the bootstrap support values from the homoplasy-free
data did not correlate significantly with clade priors in
any of these cases (balanced: trees = 5, nodes = 87,
P = 0.268; pectinate: trees = 5, nodes = 87, P = 0.319;
combined: P = 0.100). Similarly, the jackknife support
values showed no relationship with clade priors regard-
less of tree shape or taxon number (balanced: trees = 5,
nodes = 87, P = 0.538; pectinate: trees = 5, nodes = 87,
P = 0.446; combined: P = 0.525). As expected from the-
ory (Farris et al., 1996), jackknife values were almost all
63%, varying from 62 to 64%, regardless of clade size
(see Fig. 3A). Bootstrap values were slightly higher than



Fig. 3. Contrived matrices and their phylogenetic results, for the 15-taxon case. Balanced (top row) and pectinate (bottom row) matrices were
analyzed using the parsimony criterion; in the case of the Bayesian analysis (second column), this was accomplished by implementing the ‘‘no
common mechanism’’ model of Tuffley and Steel (1997). Every node in the analyses is supported by a single uncontradicted synapomorphy.
Bootstrap and Jackknife support values are essentially consistent regardless of clade size, showing no relationship with calculated clade priors.
Bayesian clade support values, on the other hand, show a significant, positive relationship with clade priors (two-dimensional Kolmogorov–Smirnov
test: P < 0.0002; see text for further details). This influence is present under Bayesian analysis employing Jukes-Cantor. This bias in Bayesian analyses
is consistent with bias introduced from the stipulation of uniform topological priors alone.
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jackknife values, varying from 63 to 65% regardless of
clade size (see Fig. 3A), which is not outside theoretical
expectation (Efron et al., 1996). But unlike the support
from re-sampling methods, Bayesian clade support val-
ues did vary according to clade size; specifically, for pec-
tinate trees the largest (T = n � 2) and smallest (T = 2)
clades were always supported by 57%, regardless of the
number of the taxa in the tree. Support for intermediate
clades on Bayesian trees varied from 48 to 49% (see Fig.
3A). Similarly, for balanced trees, the smallest clades
(T = 2) were supported by 45–46% when the clade was
sister to a clade of two taxa; but when the smallest clades
were sister to a single taxon, the support varied from 54
to 55%. This bias was never present for bootstrap or
jackknife values. Because there are no n � 2 sized clades
on balanced trees, we cannot report those values. How-
ever, intermediate-sized clades on balanced Bayesian
trees consistently showed the lowest support, varying
from 29 to 36%.

To address the suggestion that our results may merely
be the result of the interface of the Bayesian method and
what is, compared to typical ML, a peculiar model
(NCM), we have conducted some additional analyses.
The Bayesian analyses were conducted again, this time
using the homogeneous ML model chosen according to
the hierarchic likelihood ratio test, as implemented in
ModelTest 3.5 (Posada and Crandall, 1998). Bayesian
support values resulting from analysis under that model,
Jukes-Cantor, also showed significant correlation with
clade priors (balanced: trees = 5, nodes = 87,
P = 0.0002; pectinate: trees = 5, nodes = 87,
P = 0.0026; combined: P = 0.0002), just as when NCM
was used.

These results support our hypotheses that: (1) the
correlation between re-sampling support and clade
priors is an artifact of noise in natural data and not
due to any influence of clade priors per se and (2)
Bayesian support values are influenced by clade priors,
even when the signal from the data is homoplasy-free,
exhibiting no noise. However, it should be noted that
despite the measurable influence of clade priors on
Bayesian clade support values, the correct trees were
always inferred by Bayesian analysis, but some two-
taxon clades received higher support (see Fig. 3; clades
A + B) than did others (see Fig. 3; clades E + F). Also,
the pectinate trees under NCM seem to be less influ-
enced by the priors (always giving 57% for small and
large clades, but virtually flat values for intermediate
sized clades) than the pectinate Jukes-Cantor support
values, which follow the clade prior distribution more
closely (see Fig. 3). These data suggest a complex inter-
action between the likelihood function, clade priors
and data.
5. Discussion

The new Bayesian approach to phylogenetics offers
at least two potential speed advantages over Maximum
Likelihood methods. The first is that MCMC searches
much more of the parameter space than do ML heuris-
tics, and if the chain is run sufficiently long, the poster-
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ior distribution of trees results. Another time-saving
advantage of MCMC is that it computes support dur-
ing tree search. As is well known, traditional re-sam-
pling support measures, like the bootstrap, are
extremely time-consuming, especially under ML. To-
day�s standards of taxon sampling and sequence length
may prohibit thorough bootstrapping. MCMC has
been advocated as a method that allows for the substi-
tution of clade frequency across the distribution of
trees for laborious bootstrapping (Larget and Simon,
1999). However, this second time-saving step only
makes sense if the clade priors adequately model igno-
rance, or if they incorporate prior knowledge. We have
shown here that, when all trees are treated as equally
probable, a priori, Bayesian clade support distributions
are affected by priors that fail to model ignorance accu-
rately, and the distribution of clade priors thus implied
is not a reasonable statement of a priori knowledge.
Few, if any, systematists believe a priori that the prob-
ability of monophyly has anything to do with the num-
ber of taxa hypothesized to be monophyletic.
Certainly, the prior assertion that small clades and
large clades are more probable than mid-sized clades
lacks biological relevance. As such, a return to opti-
mality per se is warranted.

If the goal of Bayesian phylogenetics is to calculate
the posterior probability of trees, the tree(s) of most
interest from that distribution should be the most prob-
able one(s). By choosing the most probable tree(s) and
using that as the optimality criterion, the Maximum A
posteriori Probability (MAP) tree would be approxi-
mated; this was the initial suggestion of Rannala and
Yang (1996).

However, researchers may not want to abandon
Bayesian support values altogether. To determine how
much the evidence has improved prior confidence in
clade hypotheses. A Bayes factor can be calculated as
in Huelsenbeck and Imennov (2002, p. 161):

Bayes factor ¼ posterior=ð1� posteriorÞ
prior=ð1� priorÞ :

Consider an analysis of ten terminals. A clade of two
taxa has a prior probability of 0.0584 and a clade of five
taxa has a prior probability of 0.0029. If both clades re-
ceive a Bayesian support value of 0.70, the Bayes factors
are 24.0 and 808.1, respectively. In this case we should
have 808.1/24.0 or approximately 34 times more confi-
dence in the clade of five than in the clade of two. As
a caveat, clade priors are rather close to zero, even for
small data sets, resulting in generally high Bayes factors.
For a given tree, Bayes factors could be ranked, or
otherwise normalized to indicate relative support among
clades of different sizes. Such normalization will not nec-
essarily render the results the same as traditional Maxi-
mum Likelihood, as the tree upon which they will be
reported could be the 50% majority-rule consensus of
the posterior distribution of trees, and not the MAP
tree.

At a minimum, researchers should be aware that
Bayesian clade support values are only comparable for
clades of equal size on a given tree (or clades of equal
size across trees of equal size). Indeed, this warning ap-
plies to the bootstrap and jackknife with equal force.
However, as we have shown, this caveat applies to Bayes
even when data are free of character conflict. This is be-
cause Bayesian clade values are uniquely afflicted by an
influence that derives from the stipulation of uniform
tree priors (unequal clade priors).

This sheds light on the disparity between data and
theory, which suggests bootstrap support and Bayesian
support should be comparable (Larget and Simon,
1999). As in Efron et al. (1996, p. 13431), bootstrap sup-
port can be thought of as Bayesian support ‘‘if we begin
with an �uninformative� prior density. . .’’ However, the
prior density on clades cannot be uninformative when
tree priors are. This may explain why a growing body
of evidence suggests no general correspondence between
re-sampling support and Bayesian support (Alfaro et al.,
2003; Cummings et al., 2003; Douady et al., 2003; Eri-
xon et al., 2003; Simmons et al., 2004; Suzuki et al.,
2002; Wilcox et al., 2002).
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